Chemical and Nutritional Evaluation of Pumpkin (*Cucurbita pepo*) Seed Proteins

Adanma C. Innocent-Ukachi

Department of Food Science and Technology, College of Applied Food Sciences and Tourism, Michael Okpara University of Agriculture Umudike, P.M.B 7267, Umuahia, Abia State, Nigeria.

Author’s contribution
The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information
DOI: 10.9734/AFSJ/2019/v8i29989

(1) Dr. Papiya Bigoniya, Professor, Dr. Satyendra Kumar Memorial College of Pharmacy, RKDF University, Abbas Nagar, Gandhinagar, India.

(2) Dr. Vincent Nyau, University of Zambia, Zambia.

Eray Tulukcu, University of Selcuk, Turkey.

Complete Peer review History: http://www.sdiarticle3.com/review-history/48255

Received 12 January 2019
Accepted 30 March 2019
Published 12 April 2019

ABSTRACT

Chemical and nutritional properties of pumpkin (*Cucurbita pepo*) seed proteins were studied. The seed was processed into defatted flour (CPF) which was further processed into *Cucurbita* protein concentrate (CPC) and *Cucurbita* protein isolate (CPI) by alkaline water/isoelectric precipitation. Chemical properties of the protein products were determined using standard methods of analysis. The amino acid profile was determined by an automated Technicon® liquid chromatography system. Protein digestibility was assessed *in-vitro* (IVPD) using trypsin-pepsin enzyme method while biological values were determined on the basis of their amino acid profile. Protein efficiency ratio (PER) was estimated according to a standard proposed regression equation. The seed proteins demonstrated high levels of crude protein (CPC=69.98% and CPI=74.15%), vitamin C (CPC=43.46 and CPI=52.36 mg/ml) and vitamin A (CPC=100.56 and CPI=63.43 I.U/g) with low levels of thiamin and riboflavin. Both proteins showed low and similar (p>0.05) levels of sodium (0.14-0.18%), calcium (0.86-1.02%), magnesium (0.53-0.58%) and phosphorus (0.09-0.11%). Percentage ratios of essential to total amino acids obtained for CPC and CPI (44.24% and 45.50%, respectively) were greater than 36% which is considered adequate for an ideal protein. Protein biological values obtained for CPC and CPI respectively were: 95% and 53% (chemical score), 2.80 and 1.56 (PER} and 70.10% and 51.28% (essential amino acid index). CPC showed a better digestibility than CPI with IVPD value of 56.88%. Threonine and lysine were the most limiting
amino acids in both protein products. All anti-nutrients evaluated were low and below allowable limits. In conclusion pumpkin seed proteins showed good biological values and could be used to improve the quality of other plant proteins or as a possible replacement for animal proteins in conventional foods.

Keywords: Pumpkin seed; protein concentrate; protein isolate; amino acid; biological value.

1. INTRODUCTION

The serious consequences of malnutrition, particularly among infants and children, form a primary roadblock to social and economic development. This condition has engaged national agencies with many new programs to cope with the overall problem. Such programs include the rapid development, distribution and marketing of various protein-rich foods such as legumes and oil seed proteins. Recently the use of underutilized agricultural products has gained more attention. This is mostly the case in developing countries like Nigeria, where the emphasis has been on improving the amino acid profile of cereal-based products, by using the locally available rich sources of plant proteins. Such use would also give rise to various new foods. Pumpkin (Cucurbita pepo) seeds are eaten when roasted or used as baking ingredient for bread and cake mostly in developed countries. The seed and seed oil are rich sources of protein, vitamins, polyunsaturated fatty acids and carotenoids [1]. Pumpkin seed has received much attention in recent years because of its nutritional and health benefits [2]. The extract from Cucurbita pepo fruit and seed is known to improve urinary dysfunction and prostatic hyperplasia as well as conferring antioxidant, anti-inflammatory and antimicrobial benefits. It has also been used as a hypoglycemic agent [3]. Proteins used in food and pharmaceutical industries could be produced as concentrates or isolates and these form important ingredients in many food processes where they show specific functions. This study aims to examine the chemical composition and nutritional potentials of pumpkin seed protein concentrate and isolate.

2. MATERIALS AND METHODS

Pumpkin seeds were extracted from the fruits planted without chemical treatments and harvested from a farm at Umuigu Oboro, Ikwuano Local Government Area in Abia State, Nigeria. All reagents used in this study were of analytical grade.

2.1 Preparation of Sample

2.1.1 Preparation of defatted Cucurbita pepo seed flour

The extracted seeds were washed, sundried and manually decorticated. The seeds were crushed using a household mill (super intermet blender SI-462 model) and defatted to some extent by soaking in n-hexane (Sigma Aldrich) for 36 h with the change of the solvent every 8 h. The defatted flour was separated from solvent by filtration, dried at room temperature (27°C±1°C) and placed in a laboratory fume hood for 24 h to further remove traces of the solvent. The flour was ground to pass through a 355 MIC sieve, packaged in an air tight plastic container and kept in a refrigerator until analyzed.

2.1.2 Preparation of protein concentrate

Cucurbita pepo seed protein concentrate was developed from the flour using isoelectric precipitation and centrifugation [4]. The defatted flour was dispersed in distilled water in the ratio of 1/20 (w/v) and pH of the mixture was adjusted to 10.0 with 1.0 N NaOH (221465, Sigma Aldrich). The flour suspension was stirred at room temperature (27 ± 1°C) for 1h, and then centrifuged at 3,000 rpm for 15 minutes. The supernatant was adjusted to pH 4.5 (Isoelectric point) with 1.0 N HCl. The suspension was centrifuged at 3,000 rpm for 15 minutes. The procedure was repeated on the residue to obtain a higher yield. The supernatant was discarded, and the precipitate was neutralized with 1.0 N NaOH and oven dried at 45°C overnight. The concentrate was packaged in an air-tight container and stored in a refrigerator until analyzed.

2.1.3 Preparation of protein isolate

The defatted flour was dispersed in hot water (55°C) at a ratio of 1:15, and the pH was adjusted to 9.0 with 2.0 N NaOH. The slurry was stirred for 45 minutes and allowed to stand for 15 minutes at room temperature (27 ± 1°C). It was then centrifuged at 4°C for 30 minutes at 14,300
rpm. The supernatant was collected, and the pH was adjusted to 4.5 with 2 N HCl followed by stirring for 45 minutes at 25°C and centrifugation at 2830 rpm (4°C) for 15 minutes. The precipitate obtained was washed twice with distilled water and centrifuged each time at 2830 rpm for 10 minutes. It was then re-suspended in 5 ml of distilled water and neutralized to pH 7.0 with 2 N NaOH. The isolate was oven dried at 45°C overnight, packaged in an air-tight container and stored in a refrigerator until analyzed [5].

2.2 Chemical Analyses

2.2.1 Chemical composition

Crude protein, fat, ash, moisture, and vitamin C were determined as described by [6] and minerals were determined using the method described by [7]. Carbohydrate was determined by difference and calorific value was obtained using the method of [8]. Thiamin and riboflavin were determined as described by [9]. Vitamin A was determined using the method described by [10]. Tannin, phytic acid and trypsin inhibitor were determined by the methods of [11,12] and [13], respectively. Saponin was determined by the method of [14] and cyanogenic glycoside by [9]. Stachyose and raffinose were determined using the method of [15].

2.2.2 Amino acid profile

Amino acid profile was determined using an automated liquid chromatography system for amino acid analysis (Technicon sequential multi-sample analyzer; Technicon Industrial systems, New York) according to the method of [16]. The sample was hydrolyzed in 7ml of 6 N HCl at 105°C for 22 h under a nitrogen atmosphere. The hydrolyzed sample was mixed with 5 ml of acetate buffer (pH 2) and 10 μl of the sample was loaded into the analyzer. The amount of amino acid present in the samples was calculated in g/100 g protein.

2.2.3 In-vitro protein digestibility

Protein digestibility was determined using the method of [17]. In a centrifuge tube, 1g of the sample was suspended in 20 ml of 0.10 M HCl and mixed with 50 mg pepsin from porcine stomach mucosa (KühL Lagern, Germany) in 1 ml of 0.01 M HCl. The mixture was gently shaken at 37 °C for 48 h and then centrifuged at 4,000 rpm for 10 min. The solid was suspended in the enzyme solution containing 10 ml of water and 5 mg trypsin from porcine pancreas (KEM Light Laboratories PVT Ltd, India) in 10 ml of 0.10 M phosphate buffer (pH 8.0). The mixture was gently shaken for 16 h at 23°C in a water bath shaker. The digested mixture was centrifuged, and 10 ml of 10% trichloroacetic acid (TCA) was added to the supernatant. The supernatant previously obtained from pepsin digestion was also treated in a similar manner. Precipitated proteins were removed by centrifugation at 10,000 rpm for 25 min. The nitrogen content of the TCA-soluble matter of the supernatant was determined by Kjeldahl nitrogen analysis. In-vitro protein digestibility (IVPD) was expressed as percentage enzymatic digestion as shown below;

\[
\text{In-vitro protein digestibility \ (IVPD \ (%)) = \frac{\text{Nitrogen released by enzyme}}{\text{Total nitrogen content of undigested sample}} \times 100}
\]

2.2.4 Protein digestibility corrected amino acid score (PDCAAS)

Protein digestibility was determined using the method of [18] as recommended by [19] using the formula:

\[
\text{PDCAAS} = \frac{\text{uncorrected amino acid score}}{\text{protein digestibility}}
\]

Where,

\[
\text{Uncorrected amino acid score} = \frac{\text{mg of EAA in 1 g of sample}}{\text{mg of EAA in reference protein}} \times 100
\]

2.2.5 Biological values

Biological values of defatted Cucurbita pepo seed proteins were determined on the basis of the amino acid profiles. The amino acid score was calculated for each essential amino acid in a given test protein using the FAO/WHO reference pattern and formula [20];

\[
\text{Amino acid score} = \frac{\text{mg of amino acid in 1g of test protein}}{\text{mg of amino acid in 1g reference protein}}
\]

The method described by [21] was used in calculating the Essential Amino Acid Index (EAAI) of the protein using the amino acid composition of whole egg protein as standard [22].

\[
\text{EAAI (\%)} = 100 \times \sqrt[10]{\frac{\sum\text{ai ref}}{\sum\text{ai}}}
\]
3. RESULTS AND DISCUSSION

3.1 Chemical Analyses

3.1.1 Chemical composition

Result of the chemical composition of *Cucurbita pepo* seed flour (defatted) and proteins is shown in Table 1. The protein content of *Cucurbita pepo* protein isolate was slightly higher (74.15%) than that of the protein concentrate (69.98%). The result from this study is comparable to seed protein isolate of some varieties of watermelon which showed values ranging from 79.05-83.79% protein as reported by [24] and lower than that reported by [25] for different varieties (*Citrullus colocynthis*, *Citrullus vulgaris* and *Lageneria sicerararia*) of gourd melon seeds which ranged from 88.14-90.91% protein. *Cucurbita pepo* protein concentrate exhibited a slightly lower protein level than watermelon seed cultivars: *Matera* (72.26%) and sugar baby (71.38%) as reported by [26]. However, the protein content of *Cucurbita pepo* protein concentrate was close to the expected range of 70-85% as reported by [27] while protein isolate showed a lower amount of protein compared to the expected range of 92-94% as reported by [28]. This result may be attributed to incomplete recovery of proteins which may in part be due to losses during the washing process or retention in the residue, caused by complexation with other seed components [29]. The ash content of *Cucurbita pepo* seed protein isolate (5.50%) was significantly higher than that of the protein concentrate (1.24%) and slightly higher than the values reported by [25] for *Citrullus colocynthis* (4.70-4.84%) and *Lageneria sicerararia* (4.24-4.54%). *Cucurbita pepo* seed protein concentrate gave higher values for ash content than that reported for watermelon seeds which ranged from 0.4-0.5% [26]. The higher amount of ash in the isolate perhaps may be due to salt formation during protein precipitation at the isoelectric point as reported by [29]. It has also been reported that high ash content in protein isolate could be due to formation of sodium chloride through the neutralization process during preparation by alkaline water extraction/isolectric precipitation [30].

The fat content of *Cucurbita pepo* seed protein isolate was significantly (p<0.05) lower than the amount detected in the partially defatted flour, and protein concentrate respectively. Fat concentrates with the protein fractions, and this could probably have led to its higher level observed in the seed protein concentrate. Although crude fibre was present in the seed flour, it was not detected in both proteins and as such may have been processed out during the digestion of the samples. This observation agrees with the earlier studies of [31] and [32] for jack bean (*Canavalia ensiformis*) and bambara groundnut protein concentrates respectively and compares to that of [33] who reported <1% crude fibre, for wheat germ protein isolate. The carbohydrate content of the protein concentrate was higher than that of the isolate, and this could be due to the removal of the insoluble polysaccharides during preparation of the isolate. Protein concentrate and isolate showed fairly high content of vitamin C with values of 43.46% and 52.36% respectively. The protein samples were low in minerals and showed no significant difference in the levels detected for each mineral in both cases.

The result of antinutritional factors of *Cucurbita pepo* seed products is shown in Table 2. Values obtained for tannin in the protein concentrate (0.76%) and isolate (0.88%) were higher than the value for *Adenopus breviflorus* seed protein isolate (<0.1%) as reported by [34] and some legumes (sweet and bitter lupin seed protein isolates) reported to have 0.32-0.49% [35]. A report has shown that bitterness in plant materials is due to high tannin content [36]. The level of phytic acid in the proteins was found to be 0.10% and 0.14% in *Cucurbita pepo* seed protein concentrate and isolate, respectively.

Where \(a_i \) and \(a_{i ref} \) represent the concentration of essential amino acids in test sample and the reference protein respectively.

Protein efficiency ratio (PER) was estimated according to the regression equation proposed by [23].

\[
PER = -0.468 + 0.454 \text{ (Leucine)} - 0.105 \text{ (Tyrosine)}
\]

2.3 Statistical Analysis

Two individual determinations of four replicate samples were analysed and the significant difference between chemical compositions of the proteins was tested by ANOVA Duncan’s multiple range tests with SPSS statistical software (version 20, IBM SPSS, UK).

Where \(i \) and \(j \) represent the concentration of essential amino acids in test sample and the reference protein respectively.
Table 1. Chemical composition of *Cucurbita pepo* seed flour and proteins

<table>
<thead>
<tr>
<th>Composition</th>
<th>CPF</th>
<th>CPC</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>3.24 ± 0.339</td>
<td>9.36 ± 0.226</td>
<td>7.24 ± 0.099</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>5.38 ± 0.311</td>
<td>1.24 ± 0.198</td>
<td>5.50 ± 0.226</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>18.91 ± 1.159</td>
<td>12.90 ± 0.283</td>
<td>9.80 ± 0.2828</td>
</tr>
<tr>
<td>Crude fibre (%)</td>
<td>1.61 ± 0.042</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Crude Protein (%)</td>
<td>57.50 ± 2.969</td>
<td>69.98 ± 1.796</td>
<td>74.15 ± 1.527</td>
</tr>
<tr>
<td>Carbohydrate (%)</td>
<td>13.37 ± 0.382</td>
<td>6.52 ± 0.113</td>
<td>3.31 ± 0.424</td>
</tr>
<tr>
<td>Calorific Value (Kcal/100g)</td>
<td>453.67 ± 12.403</td>
<td>422.10 ± 1.273</td>
<td>398.00 ± 2.178</td>
</tr>
<tr>
<td>Vitamin C (mg/ml)</td>
<td>16.00 ± 0.311</td>
<td>43.46 ± 3.620</td>
<td>52.36 ± 0.976</td>
</tr>
<tr>
<td>Vitamin A (I.U/g)</td>
<td>47.31 ± 2.305</td>
<td>100.56 ± 1.329</td>
<td>63.43 ± 1.004</td>
</tr>
<tr>
<td>Thiamin (%)</td>
<td>0.75 ± 0.057</td>
<td>0.74 ± 0.071</td>
<td>0.74 ± 0.099</td>
</tr>
<tr>
<td>Riboflavin (%)</td>
<td>0.34 ± 0.071</td>
<td>0.26 ± 0.085</td>
<td>0.32 ± 0.028</td>
</tr>
<tr>
<td>Na (%)</td>
<td>0.18 ± 0.071</td>
<td>0.14 ± 0.085</td>
<td>0.18 ± 0.028</td>
</tr>
<tr>
<td>Ca (%)</td>
<td>1.40 ± 0.212</td>
<td>0.86 ± 0.156</td>
<td>1.02 ± 0.028</td>
</tr>
<tr>
<td>Mg (%)</td>
<td>0.72 ± 0.042</td>
<td>0.53 ± 0.057</td>
<td>0.58 ± 0.085</td>
</tr>
<tr>
<td>P (%)</td>
<td>1.09 ± 0.113</td>
<td>0.11 ± 0.014</td>
<td>0.09 ± 0.028</td>
</tr>
</tbody>
</table>

Different letters indicate statistically significant differences among samples within the same row (p<0.05). Data are means ± standard deviation of duplicate determinations with four replicates samples (n=4). CPF = *Cucurbita pepo* seed flour, CPC = *Cucurbita pepo* seed protein concentrate, CPI = *Cucurbita pepo* seed protein isolate, ND = Not detected.

Table 2. Antinutritional factors of *Curcubita pepo* seed products

<table>
<thead>
<tr>
<th>Antinutrients (%)</th>
<th>CPF</th>
<th>CPC</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin (%)</td>
<td>0.69 ± 0.255</td>
<td>0.76 ± 0.127</td>
<td>0.88 ± 0.999</td>
</tr>
<tr>
<td>Saponin (%)</td>
<td>0.56 ± 0.170</td>
<td>0.54 ± 0.057</td>
<td>0.51 ± 0.057</td>
</tr>
<tr>
<td>Hydrogen cyanide (mg/100g)</td>
<td>4.08 ± 0.113</td>
<td>3.45 ± 0.071</td>
<td>3.98 ± 0.028</td>
</tr>
<tr>
<td>Trypsin inhibitor (TIU/g)</td>
<td>2.07 ± 0.382</td>
<td>2.18 ± 0.325</td>
<td>2.06 ± 0.057</td>
</tr>
<tr>
<td>Phytate (%)</td>
<td>0.44 ± 0.085</td>
<td>0.10 ± 0.014</td>
<td>0.14 ± 0.064</td>
</tr>
<tr>
<td>Stachyose (%)</td>
<td>3.00 ± 0.283</td>
<td>2.80 ± 0.141</td>
<td>0.80 ± 0.078</td>
</tr>
<tr>
<td>Raffinose (%)</td>
<td>0.80 ± 0.127</td>
<td>0.70 ± 0.226</td>
<td>0.20 ± 0.028</td>
</tr>
</tbody>
</table>

Data are means ± standard deviation of duplicate determinations. CPF = *Cucurbita pepo* seed flour, CPC = *Cucurbita pepo* seed protein concentrate, CPI = *Cucurbita pepo* seed protein isolate.

Phytic acid in *Cucurbita* seed proteins was lower than the value (4.67 mg/g) reported by [34] for *Adenopus breviflorus* seed protein isolate. Although limited information is available on the dose of phytate which may have negative effect in humans, the smallest toxic dose of phytate in man is not yet established. However, it appears that high doses are required for any appreciable effect in man [37,38]. Hydrogen cyanide (HCN) was found to be 3.45 mg and 3.98 mg in *Cucurbita* seed protein concentrate and isolate, respectively. HCN detected in both proteins in this study were below the safety level for cyanide poisoning in man. The lethal dose range of HCN when ingested by humans is estimated at 50-60 mg/kg body weight per day as reported by [39]. Protein isolate exhibited a lower level of trypsin inhibitor than the protein concentrate. The
reduced content of the oligosaccharides in the protein samples may be attributed to processing techniques and solubility during protein precipitation. Values obtained for stachyose and raffinose in both *Cucurbita* proteins ranged between 0.80-2.80% and 0.20-0.70% respectively. However, protein isolate showed much lower values than the protein concentrate and the flour (Table 2). The amount of these oligosaccharides reported by [40] for some legumes such as raw jack bean seed (stachyose 1.80 g/100g and raffinose 1.51 g/100g) is slightly higher than values reported for protein isolate in this study. Result from this study is also partly comparable to the levels of raffinose and stachyose in soaked and cooked dry beans (*Phaseolus vulgaris, L*) as reported by [41] and suggest that protein isolation could also be an effective means of reducing these oligosaccharide in food ingredients. Raffinose, and stachyose have been identified as flatulence inducers and when ingested cause accumulation of gas, discomfort, diarrhea, pain and cramps [42]; a factor which tends to render legumes less acceptable.

3.1.2 Amino acid and protein nutritional quality

The amino acid profile of *Cucurbita pepo* seed proteins is shown in Table 3. Generally, protein isolate showed lower amino acid levels compared to the concentrate. This could be attributed to some antinutrients such as tannin which affect the nutritional quality of the protein. Rasco [21] reported that some foods contain heat-labile anti-nutritional factors (e.g. trypsin inhibitor) and are usually cooked to inactivate the inhibitor while some contain heat stable anti-nutrients (e.g. tannins) that can decrease the nutritive value of a protein. The lysine content of *Cucurbita* seed protein concentrate was higher than that of the protein isolate. However, the value reported by [34] for lysine in *Adenopus breviflorus* seed protein isolate (52.40 mg/g equal to 5.24g/100 g) was higher compared to the result (3.09 g/100 g) obtained in this study. The lower content of lysine and the sulphur amino acid in the isolate may also be due to the high reduction of albumin (reported to be rich in lysine, cysteine and methionine) in the protein products [43]. Lysine is an essential amino acid and a building block of proteins which helps to produce energy in the body from fatty acids. Although high doses of lysine have been found toxic in humans, levels up to 800-3,000 mg/day was recommended as safe in adults [44]. The total essential amino acid was highest in *Cucurbita pepo* seed protein concentrate (38.32 g/100g protein) and least in the isolate (27.79 g/100 g protein). Ayodele and Aladesanmi [34] reported a higher value for the total essential amino acid in *Adenopus breviflorus* seed protein isolate (49.38 g/100g). Percentage ratios of essential to total amino acids (E/T, %) for *Cucurbita pepo* seed protein concentrate and isolate were above 36%, which is considered adequate for an ideal protein [45]. The present study shows slightly lower level of E/T (42.39%) in *Cucurbita* protein isolate than that reported by [34] for *Adenopus breviflorus* seed protein isolate (50.37%) and whey protein isolate (47.79%) [46]. However, when compared to whey proteins [46] higher levels of phenylalanine (essential amino acid), arginine and glycine were recorded in this study for *Cucurbita* protein concentrate and isolate and the value obtained for histidine in CPC compares favorably with whey protein concentrate (Table 3).

The protein nutritional quality of *Cucurbita pepo* seed protein concentrate and isolate was evaluated (Table 4). The protein concentrate satisfied the FAO/WHO/UNU requirements for the essential amino acids [47]. Chemical score is used to assess dietary protein quality. The chemical score (based on the amount of sulphur amino acids in the protein) was above 100% in the protein concentrate. Overall, protein concentrate showed the highest chemical score (95.0%) and protein efficiency ratio of 2.80 while protein isolate had the least values of 53.0% and 1.56 respectively, based on the first limiting amino acid. The Protein efficiency ratio (PER) is another factor for protein evaluation with the PER value of < 1.5 indicating low protein quality, 1.5 and 2.0 as intermediate protein quality and > 2.0 indicating high protein quality [48]. PER values obtained in this study showed that *Cucurbita* seed protein concentrate is a high-quality protein with PER of 2.80 while the value for protein isolate (1.56) indicated an intermediate quality and lower than the PER of 2.67 recorded for *Adenopus breviflorus* seed protein isolate [34]. However the PER obtained in this study for both seed proteins gave values higher than in some legumes as reported for sweet and bitter lupin protein isolates obtained from different isolation techniques [30].

Cucurbita seed protein concentrate was rich in leucine, total aromatic amino acid (tyrosine and phenylalanine), sulphur amino acid (methionine and cysteine), aspartic and glutamic acids but
Table 3. Amino acid profile of *Cucurbita pepo* seed proteins (g/100 g protein)

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Composition (g/100 g)</th>
<th>FAO/WHO/UNU (1985) Pre-school child (2-5 yrs) reference pattern (g/100 g protein)</th>
<th>Uncorrected amino acid score</th>
<th>PDCAAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPC</td>
<td>CPI</td>
<td>CPC</td>
<td>CPI</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>3.91 (6.41)</td>
<td>3.20 (5.40)</td>
<td>2.80</td>
<td>1.40</td>
</tr>
<tr>
<td>Leucine</td>
<td>7.19 (11.60)</td>
<td>5.11 (13.50)</td>
<td>6.60</td>
<td>1.09</td>
</tr>
<tr>
<td>Lysine</td>
<td>5.61 (9.83)</td>
<td>3.09 (10.90)</td>
<td>5.80</td>
<td>0.97</td>
</tr>
<tr>
<td>Cysteine</td>
<td>1.19 (2.28)</td>
<td>0.73 (1.90)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methionine</td>
<td>1.72 (2.35)</td>
<td>0.68 (3.50)</td>
<td>Methionine + cysteine = 2.50</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>Total sulphur amino acid</td>
<td>2.91 (4.63)</td>
<td>1.41 (5.40)</td>
<td>1.21</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>3.22 (3.26)</td>
<td>2.74 (3.90)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>4.39 (3.56)</td>
<td>3.72 (3.40)</td>
<td>Phenylalanine + tyrosine =6.30</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>Total aromatic amino acids</td>
<td>8.78 (8.62)</td>
<td>7.56 (8.80)</td>
<td>1.26</td>
</tr>
<tr>
<td>Threonine</td>
<td>3.22 (8.44)</td>
<td>2.30 (5.30)</td>
<td>3.40</td>
<td>0.95</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>1.17 (1.80)</td>
<td>1.10 (1.50)</td>
<td>1.10</td>
<td>1.06</td>
</tr>
<tr>
<td>Valine</td>
<td>4.30 (6.09)</td>
<td>3.43 (5.40)</td>
<td>3.50</td>
<td>1.23</td>
</tr>
<tr>
<td>Histidine</td>
<td>2.40 (2.41)</td>
<td>1.69 (2.00)</td>
<td>1.90</td>
<td>0.89</td>
</tr>
<tr>
<td>Arginine</td>
<td>5.61 (3.18)</td>
<td>5.02 (3.00)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>9.29 (12.26)</td>
<td>6.23 (12.30)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>12.62 (15.41)</td>
<td>7.10 (17.70)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serine</td>
<td>2.49 (6.24)</td>
<td>1.71 (4.50)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Proline</td>
<td>3.08 (6.28)</td>
<td>2.34 (4.80)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glycine</td>
<td>4.30 (2.00)</td>
<td>3.14 (1.90)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alanine</td>
<td>5.49 (4.82)</td>
<td>4.03 (5.60)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total amino acids</td>
<td>81.92 [108.22]</td>
<td>57.36 [106.50]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Essential amino acids</td>
<td>33.91 [52.49]</td>
<td>24.32 [50.90]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E/T (%)</td>
<td>41.39 [48.50]</td>
<td>42.39 [47.79]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

=Limiting amino acid, †Total sulphur amino acid = Cysteine + Methionine, #Total aromatic amino acids = Tyrosine + Phenylalanine + Tryptophan, values in parenthesis () = equivalent values for whey protein (source: Richard, B.K [46]), E/T [] =values calculated from source, E/T= Essential to total amino acid; CPC = *Cucurbita pepo* seed protein concentrate, CPI = *Cucurbita pepo* seed protein isolate; PDCAAS = Protein digestibility corrected amino acid score
limiting in threonine, lysine and tryptophan while the protein isolate was rich in total aromatic amino acid, aspartic and glutamic acids but limiting in lysine, total sulphur amino acid and threonine. Thus, lysine and threonine were the major limiting amino acids noted in *Cucurbita* seed proteins. This result is contrary to the reports on some legume protein isolates obtained under various isolation conditions such as beach pea and pigeon pea seed proteins rich in lysine, leucine, aspartic and glutamic acids but limiting in methionine and tryptophan [29,49]. Protein concentrate had a higher essential amino acid index (EAAI) than the isolate. The EAAI value obtained for *Cucurbita* seed protein isolate is lower than that reported for sweet and bitter lupin isolates prepared by alkaline water extraction/isoelectric precipitation and micellisation. The present results suggest that *Cucurbita pepo* seed protein concentrate could be blended with other oil seed proteins to improve their biological values. *Cucurbita* seed protein concentrate showed a higher digestibility than the isolate. Comparing the digestibility of *Cucurbita* seed proteins from this study with some legumes, *Cucurbita* seed protein concentrate exhibited a lower digestibility value (23.36%) compared to those of cowpea meals (73%), and pigeon pea (59%) as reported by [50] and 90% for flaxseed protein isolate [51]. Le Guen [52] studied digestibility of protein isolates from two varieties of pea (Finale and Frijaune) in piglet and reported values ranging from 83.7 to 85.4%. The low digestibility values of *Cucurbita* protein concentrate and isolate may be as a result of the globular structure of the proteins and the presence of protease inhibitors (albumins) which hinder the activity of digestive enzymes [53].

4. CONCLUSION

In conclusion, the chemical and nutritional properties of *Cucurbita pepo* seed protein concentrate and isolate revealed that the seed has great potentials as food ingredient. The seed is an excellent plant based protein source of phenylalanine, arginine, alanine, leucine and histidine. *Cucurbita* proteins can be used as a possible replacement for animal proteins in conventional foods. Although threonine and lysine are the first limiting amino acids in the proteins, the level of lysine detected in each case is sufficient to meet the daily recommended dose. However, further supplementation of these two amino acids may be considered in the use of these products for food formulation.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

30. El-Adawy TA, Rahma EH, El-Bedawey AA, Gafar AF. Nutritional potential and

Livestock Production Science. 1995;44(2). DOI: 10.1016/0301-6226(95)00053-4

© 2019 Innocent-Ukachi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/48255