OSMO-Microwave Drying of Pineapple (Ananas comosus) Slices: Mass Transfer Kinetics and Product Quality Characterization

Md. Akhtaruzzaman a, Md. Shakil b*, Md. Sazzad Hossain a, Asraful Alam a, Md. Hasan Tarek Mondal c, Tanjina Akter b and S. M. Shamiul Alam a*

a Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore-7408, Bangladesh.
b Department of Food Technology, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok- 10330, Thailand.
c Department of Chemical and Food Engineering, Dhaka University of Engineering & Technology, Gazipur-1707, Bangladesh.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AFSJ/2022/v21i12/606

ABSTRACT

This present research aimed to investigate the effect of slice thickness and concentration of the osmotic solution on mass transfer kinetics, the color profile of osmotically dehydrated pineapple slices, and product quality characteristics of osmotically dehydrated microwave-dried (ODMWD) products. Three slice thicknesses (0.5, 1, and 1.5 cm) and three concentrations of osmotic solution

*Corresponding author: Email: mdshakilhstu@gmail.com, s_saikot.appt@just.edu.bd;

(40, 50, and 60 °Brix) were used. The mass transfer kinetics (moisture reduction behaviour, weight loss, solid gain), physicochemical properties (color, TSS, pH, titratable acidity, vitamin C, and total sugar), and total phenolic content of pineapple slices were analyzed. During osmotic dehydration, the moisture reduction behaviour of 0.5 cm slices was faster in all osmotic solutions, whereas water loss and solid gain were higher for all slices treated with 60 °Brix. Both slice thickness and concentration of the solution significantly affected the color of OD pineapple slices. For ODMWD products, total soluble solids (TSS), pH, ascorbic acid content, total sugar, and total phenolic content increased for all slice thicknesses with an increase in osmotic solution concentration, whereas titratable acidity exhibited the opposite result. The rehydration ratio was higher in 0.5 cm slices for all solution concentrations. According to the finding, pineapple fruits can be dehydrated by using 60 °Brix solution concentration with 0.5 cm slices for making dehydrated pineapple fruit, and osmotic dehydration followed by microwave drying of pineapple fruit could be used for value-added processing products.

Keywords: Mass transfer; microwave drying; Osmotic dehydration; pineapple; product quality.

1. INTRODUCTION

Pineapple (Ananas comosus), a tropical fruit, is cultivated mostly in both tropical and subtropical climates and is known for its fantastic juiciness, intense flavour, and abundance of medical advantages [1]. After bananas and citrus, pineapple is the third-most valuable tropical fruit worldwide. In Bangladesh, pineapple ranks fourth in terms of total growing area and production [2]. In the fiscal year 2018–2019, Bangladesh produced 217,000 tons of pineapples [3]. Mature pineapple fruit contains high moisture content, high sugars, soluble solid content, ascorbic acid, the protein-digesting enzyme (bromelain), citric acid, malic acid, and vitamins A and B. Further, pineapple has a considerable quantity of calcium, potassium, vitamin C, crude fibre, and other minerals that are helpful for the digestive system and aid in keeping a healthy weight and balanced diet [1]. Moreover, pineapple lowers blood pressure, treats inflammatory diseases, contributes to weight loss, and protects against diabetes and free radical damage [4].

However, pineapple has a relatively short shelf life because of its high moisture and nutrient content, which speeds up microbial activity and causes deterioration. In industrialized countries, post-harvest losses of fruits often account for 20 to 25 percent of total fruit production and are considerably higher in developing countries [5]. In Bangladesh, it was estimated that post-harvest losses of pineapple accounted for around 25% of the overall production, with an annual economic loss of TK 550.58 core [1].

Drying is considered one of the oldest food preservation techniques, and approximately 20% of the world’s perishable crops are dried to extend their shelf-life [6]. Among various pre-treatment prior to drying, osmotic dehydration (OD) preserves the fruits by reducing water activity and results in lower drying time, better textural quality, sensory and nutritional characteristics, flavor enhancement, and color stabilization [7,8]. It minimizes energy consumption for subsequent drying processes and promotes the final quality of the product [9,10]. Furthermore, it improves product stability in a fresh-like state and prevents microbiological deterioration [11]. However, Many factors influence the rate of mass transfer during osmotic dehydration, including the food product’s specific surface area, temperature, immersion period, solute concentration and composition, mode of solid-liquid phase interaction, pressure, and the product-to-solution ratio [12].

Microwave drying is becoming more popular over conventional drying because of its several advantages, such as speed of operation, energy efficiency, better process control, and quicker start-up and shut-down times [13]. Microwave-assisted osmotic dehydration (MWOD) demonstrated improvements in rehydration properties, porosity, overall dehydration coefficient (ML/SG), drying time, and shrinkage [14,15]. Silva et al. [16] studied the effect of an osmotic solution prepared from sucrose, with or without calcium lactate and ascorbic acid on mass kinetics and effective diffusion coefficients of pineapples during osmotic dehydration. Sethi and Kaur [17] investigated the individual and combined effect of sucrose, honey, and solutions on the physicochemical quality parameters of pineapple cube, which was dried in a tray dryer.
at 60°C. Correa et al. [18] examined the influence of microwave-vacuum drying (50, 60, and 70°C) of pineapple with osmotic dehydration by sugar concentration (40, 50, and 60 °Brix) as a pretreatment on its physical and chemical properties. Botha et al. [19] optimized the quality of combined osmotic dehydration (with 55° Brix sucrose solution at 40 °C for 90min) and microwave-assisted air dried (inlet air temperatures between 30 and 70°C) of pineapple using constant power emission. To our best knowledge, a handful number of research was carried out on the MWOD of pineapples, and most of them used sucrose osmotic concentration. There has not been any research on the combined effects of sucrose, honey, and salt as an osmotic agent for evaluating pineapple quality.

Therefore, this study aimed to investigate the dehydration kinetics and quality characteristics in terms of color, rehydration, and physicochemical profile of dehydrated pineapple by using a combination of honey, sucrose, and salt as an osmotic agent.

2. MATERIALS AND METHODS

2.1 Materials, Chemical Reagents, and Equipment

Sugar (Fresh Refined Sugar), salt (ACI, Bangladeshi Salt), and pure honey (78 °Brix) were purchased from the local market in Jashore, Bangladesh. The analytical grade chemicals such as 2, 6-dichlorophenol indophenol dye, 0.1N NaOH, phenolphthalein indicator, 3% metaphosphoric acid, Folin-Ciocalteu reagent, Na₂CO₃ used which were all obtained from Sigma Aldrich Chemical Co. (St. Louis, MO, USA). The apparatus required for this study was a digital refractometer, water bath, colorimeter, glassware, etc.

2.2 Sample Collection and Preparation

Fresh and mature ripe pineapple (variety: Giant Kew) were purchased from a local food store in Jashore, Bangladesh, during November and December of 2021 and stored at 3°C before use. The samples were thoroughly washed with running water to remove adhering soil and other debris. Then the pineapples were then peeled and sliced using a sharp knife into three different slice thicknesses of 0.5 cm, 1 cm, and 1.5 cm with an area of approximately 8.5 cm².

2.3 Osmotic Solution Preparation

The osmotic solutions were prepared using a mixture of refined sugar (Fresh Refined Sugar), salt (ACI, Bangladeshi Salt), and pure honey (78 °Brix) at three different concentration levels 40, 50, and 60 °Brix according to the method reported by Tippana et al. [20].

2.4 Experimental Design

A two-factor (3×3 factorial) completely randomized design (CRD) was employed where the two factors were the slice thickness and concentration of the osmotic solution. The research was divided into two parts: osmotic dehydration of pineapple slices in a mixed osmotic solution (sugar, salt, and honey) up to a certain level and then microwave drying of the osmotically dehydrated product. In the first part, the pineapple slices were immersed in osmotic solutions in beakers at a constant temperature of 50° C for 4-6 h in a water bath for osmotic dehydration. The fruit-to-solution ratio was maintained at 1:10 [21]. The moisture loss in the samples was checked every 30 min intervals. The dehydrated slices were drained and blotted with absorbent paper to remove the excess solution. In the second part, osmotically dehydrated pineapple slices were again subjected to microwave drying using a microwave oven (MW73AD-B/D2, Samsung, Bangladesh) at 40 °C temperature (700 watts operating at a frequency of 2450 MHz) for 2-3 h. The cavity dimension of the microwave oven was (W x H x D) 330 mm x 211 mm x 309 mm. Glass plate rotates for 5 min⁻¹, and the direction of 360° rotation can be changed by pressing the on/off button. Time adjustment is made with the aid of a digital clock located on the oven. One dish containing 100 g of sample was placed on the center of a turntable fitted inside the microwave cavity and processed until the slices were dried entirely. The pineapple slices were arranged in a thin layer on a rotating, 245 mm-diameter glass plate. At 30-minute intervals, the sample was taken off the glass plate and placed on the digital balance (Radwag, Radom, Poland) to measure the moisture loss in the sample. The final moisture content of the samples was brought down to 14-16% (wet basis). The dried slices were cooled to room temperature and packed in an HDPE pack with sealing. Then it was stored in a refrigerator at 3°C temperature for future quality analysis of the dried product. A schematic flow chart of the whole experiment is presented in Fig. 1.
2.7 Ascorbic Acid (Vitamin C), Total Soluble Solids, Titratable Acidity, and pH

The ascorbic acid content was determined by the titrimetric (dye reduction) method according to the method described by Ranganna, [24]. Total soluble solids (TSS) were estimated by using a digital refractometer (HI 96801, refractometer, China) according to the method AOAC [25]. The refractometer was calibrated to zero with distilled water before sample analysis. The titratable acidity of fruit and fruit products is estimated through the titration of the fruit sample with 0.1 N NaOH by using phenolphthalein as an indicator according to the method AOAC [25]. The pH of the samples was determined using a pH meter (Digital pH meter, China). The pH meter was calibrated with standard buffer solution, such as buffer at pH 4.0, allowed by pH 7.0 before analyzing samples.

2.8 Color Characteristics

The Hunter color lab system (coordinate L*, a*, b*) using a colorimeter (CR400, Konica Minolta) was used for the color determination of fresh and ODMWD pineapple samples. Hue angle and chroma were also calculated from the CIE L*, a*, b* using Equations (v) and (vi).

\[
\text{Chroma} = (a^*^2 + b^*^2)^{1/2} \quad (vi)
\]

2.9 Total Phenolic Content

The total phenols (TP) of the sample were estimated using the methods outlined by Igual et al. [26]. Folin-Ciocalteu reagent (1.25 mL), distilled water (15 mL), and pineapple extract (0.25 mL) were mixed for 15 s before being allowed to sit for 8 minutes to experiment. After this, 3.75 mL of 7.5% Na₂CO₃ and 25 mL of distilled water were added to the mixture to bring it to the desired volume. After 120 min of incubation in the dark at room temperature, the blue color absorbance was measured at 765 nm. The TP content in samples was calculated using a gallic acid standard calibration curve and represented as mg GAE/100 g dry weight.

2.10 Statistical Analysis

The statistical analysis was carried out using a two-factor (3×3 factorial) experiment in a
completely randomized design (CRD). Each sample was replicated thrice. Statistical software (SPSS windows version 27) was used with Duncan’s Multiple Range Test analysis at 95% confidence level.

3. RESULTS AND DISCUSSION

3.1 Moisture Reduction Behaviour

The moisture reduction behaviour of pineapple slices (0.5, 1, and 1.5 cm) during osmotic dehydration at different concentration levels (40, 50, and 60 °Brix) are shown in Fig. 2a. It was observed that moisture loss was quicker during the initial period of osmotic dehydration, and then the rate of moisture reduction decreased with increasing dehydration time. Additionally, during the start of the osmotic dehydration process, the rate of water elimination was more pronounced. This behavior results from a rise in the osmotic pressure gradient between the fresh sample and the concentrated solution. Because cell membrane permeability increases with temperature, the cell membrane is encouraged to stretch and plasticize, facilitating the mass transfer. As a result, the increase in water loss is greater at higher temperatures [27]. During osmotic dehydration, moisture loss after 240 min varied from 34.09% to 42.17% at different concentration levels of osmotic solution. From all the figures, we observed that 0.5 cm slices showed rapid moisture reduction from pineapple fruits, and 60 °Brix solutions tended to remove moisture higher than 40 and 50 °Brix solutions. The higher solution concentration conditions demonstrated higher moisture reduction due to increased internal moisture pressure during osmotic dehydration. Similar findings were reported by Selvakumar & Tiwari [28] on osmotic dehydration of carrot slices was higher when the higher concentrated solution was applied for dehydration. In addition, Saputra [8] pointed out that the moisture reduction behaviour of osmotically dehydrated pineapple is significantly affected by solution type, concentration, temperature, and immersion time. Nazaneen et al. [20] reported that osmotically dehydrated pineapple slices required shorter drying time and had less impact on nutritional characteristics than the control samples. Mahesh et al. [29] studied honey as an osmotic agent that increased the osmotic dehydration of pineapple slices. Mirzayi et al. [30] experimented with the osmotic dehydration of banana slices using a combination of salt and sucrose. They pointed out that the higher percentage of salt results in higher moisture reduction. The results are also supported by a study on the osmotic dehydration of kiwifruit [31]. In addition to having low solid absorption, honey has significant osmotic pressure due to its water-bonding potential in pineapple slices. Due to their low solid gain and significant water loss, osmotic solutions are recommended for osmotic treatments of pineapple [32].

3.2 Water Loss

The percent water loss (WL) values of the pineapple slices treated with different osmotic solution concentrations are summarized in Fig. 3. The water loss of all samples gradually increased with the increasing dehydration time for all solution concentrations. Initially, the WL of the same thick slice was almost equal in the different solution concentrations, but it was found to increase in higher osmotic solution concentration with the increase in dehydration time. This may be due to increased osmotic driving forces between the sample and solution [33]. The rate of WL was higher for the 0.5 cm slice at all different solution concretion than the 1 cm and 1.5 cm slices at the beginning of the osmotic dehydration process. The rapid increase in the rate of water loss while the SG is being plunged might be caused by the simultaneous interaction of solids entering and moisture leaving, i.e., sucrose transfer might be caused by a diffusional phenomenon and the two transfer processes might be interdependent. In an earlier study, Azoubel & Murr [34], reported that water loss and solid gain increased with an increase in sugar concentration and immersion time. Tippanna et al. [20] also found that the rate of mass transfer in the fruit varied with osmotic solution concentration. They also reported that utilizing a 60% sucrose solution resulted in a water loss of 25.22% for pineapple fruit. These findings demonstrated that WL increased as contact time increased. In the microwave, similar results were noted when dehydrating cucumber, apples, and seedless guava [35,36,37].
Fig. 2. Moisture reduction behavior of (2a) 0.5 cm thick slices (2b) 1.0 cm thick slices (2c) 1.5 cm thick slices during osmotic dehydration

Fig. 3. Water loss (%) of (3a) 0.5 cm thick slices (3b) 1.0 cm thick slices (3c) 1.5 cm thick slices during osmotic dehydration

Fig. 4. Solid Gain (%) of (4a) 0.5 cm thick slices (4b) 1.0 cm thick slices (4c) 1.5 cm thick slices during osmotic dehydration

Fig. 5. Drying time of OD pineapple slices at 50°C temperature
3.3 Solid Gain

The percent Solid gain (SG) of all treatments was found to be increased with increasing solution concentration and dehydration time, as depicted in Fig. 4, as reported in previous studies [18,22]. SG rate of 0.5 cm slice was initially higher than 1 cm and 1.5 cm slices in three different (40°, 50°, and 60° Brix) osmotic solution concentrations. The 0.5, 1, and 1.5 cm slices exhibited a sharp increase in SG up to 60 min, 120 min, and 150 min of OD, respectively, and afterward, a gradual increase in SG was observed in all osmotic solution concentrations. Chandra and Kumari [38] reported a similar pattern that the soluble solid content increases with time. However, at higher concentrations at 60 °Brix, the SG rate was high for three different slice thicknesses. This may be because of the higher chemical potential difference between the sample and the osmotic solution [21]. The end of the osmotic dehydration process, the highest SG value of 9.08 % was determined for the sample of 0.5 cm thickness immersed in 60 °Brix solutions, whereas the least SG (4.61%) was recorded for the sample of 1.5 cm thickness immersed in 40°Brix solution. Additionally, when the concentration of the solute increased, the absorption of solids increased. The increase in the osmotic gradient between the fruit sample and the osmotic solution caused this particular behavior. Additionally, the osmotic agent’s low molecular weight makes it easier for it to enter the fruit tissue’s cells, favoring solid gain [39,40].

3.4 Color Attribute of Osmo-dehydrated Pineapple Slices

Food products, particularly fruits, are evaluated first and foremost by their color changes, which indicate how well consumers receive them. A significant difference in color parameters (L* - lightness, a* - redness, and b* - yellowness) among the osmotically dehydrated samples was observed in this study, as shown in Table 1. The initial L* value of fresh pineapple slices was 50.97. During OD, an increase in L* value was observed in all 0.5 cm slices, whereas a significant reduction was seen in all 1 cm and 1.5 cm slices treated with the same osmotic solution concentrations. This is possibly due to the variation in slice thickness which affects the water loss from the sample. According to Falade et al. [41], osmotic dehydration causes the cytoplasm to contract due to water loss of fruits and results in a reduction in food brightness. The L* value of all slices increased with an increase in solution concentration. As time passes during osmotic dehydration, water moves from samples into solutions, and solutes move from solutions into samples; as a result, L* of Osmo-dehydrated samples increased, and the color became lighter due to the lower water content and a subsequently slower rate of enzymatic browning reactions. A significant increase in the chromatic coordinate, a*, was witnessed with the increase in thickness and solution concentration. Sucrose concentration increases cause a larger water loss from the solution, which may raise the tissue’s pigment content and improve the product’s chromaticity. The highest value of a* was found to be 20.03 for the 1.5 cm slices treated with 60 °Brix. The chromatic coordinate of the b* value of fresh was 43.40, which was noticed to decrease with the increase in slice thickness and solution concentration. After OD, a significant decline was observed in the 1.5 cm slices treated with 60 °Brix from 43.40 to 21.47. The hue angle (H) of the slices changed from yellowness towards redness with increasing the slice thickness and solution concentration. The Hue angle of 1.5 cm slice immersed in 60 °Brix experienced the lowest H-value of 46.99. The chroma of treatments corresponded with the b* value. Ahmed et al. [42] reported that the high sucrose concentration around the samples reduces sample discoloration and prevents color degradation. This variance could be explained by the pigment migration from pulp to solution and the enzymatic or non-enzymatic browning [43]. Manzoor et al. [22,44] also reported the variation of color attributes of osmotically dehydrated fruit samples at the different concentration levels of osmotic solutions.

3.5 Microwave drying of Osmo-dehydrated pineapple slices

3.5.1 Drying time

The drying time of microwave drying of Osmo-dehydrated pineapple slices is shown in Fig. 5. The drying time was affected by the pineapple slice’s thickness. The final moisture content of the 0.5, 1, and 1.5 cm slices was obtained to 14 - 15% (wet basis) in 90, 110, and 180 min, respectively. The drying time increased with the increase in thickness may be due to the increased distance traveled by moisture to the surface [45]. A similar effect of thickness on drying time has been reported by Azimi-Nejadian & Hoseini [46] for potato slices, whereas Akal et al. [47] observed a relatively little effect at low microwave power for Kiwi slices.
3.6 Physicochemical Properties of Osmo-dehydrated Microwave-dried (ODMWD) Pineapple Slices

3.6.1 Total soluble solids, titratable acidity, and pH

Total soluble solids (TSS), Titratable acidity, and pH of osmotically dehydrated followed by microwave-dried (ODMWD) pineapple slices are summarized in Table 2. The amount of soluble sugars, organic acids, and other minor components are represented as total soluble solids (TSS). The TSS of all treatments increased with an increase in the concentration of the osmotic solution and increased in slice thickness at the same concentration level. TSS content gradually increased in each sample, which may have been caused by a drop in moisture content. The highest TSS value was 14.29% for the 1.5 cm slices treated with 60 °Brix solution, whereas the lowest TSS value was 7.63% for the 0.5 cm slice immersed in 40 °Brix solutions. Chaudhary et al. [48] found similar results on the osmotic dehydration of pineapple slices at 40, 50, and 60 °Brix concentration levels. Zhao et al. [49] also reported similar findings that osmotically dehydrated frozen mango cuboids had more total soluble solids. They discovered that after submerging mango samples in a strong sugar solution, the TSS increased. Our findings support the study by Silveira et al. [50], who found that the TSS content of osmotically dehydrated pineapple cubes increased substantially.

Titratable acidity (TA), which is significant for the sensory qualities of the fruit, is a measure of the amount of organic acids present in the fruit. The TA of pineapple slices decreased as the concentration of osmotic solution increased. In our study, the highest value of TA (0.22) was found for 1.5 cm slices treated with 40 °Brix solution, whereas the lowest value of TA (0.10%) was obtained for 1 cm slice immersed in 60 °Brix solution. Mishra et al. [51] reported that increasing the concentration of the osmotic solution led to a decrease in the acidity of the fruit slices, and this might be due to the outflow of water under osmotic pressure from fruit slices Chaudhary et al. [48] also reported the same result when they experimented on the osmotic dehydration of pineapple slices at 40, 50, and 60 °Brix solution concentration levels.

The pH is one of the most important factors affecting microflora’s growth in foods. In this study, the pH of pineapple slices increased as the concentration of osmotic solution increased, and pH decreased as an increase in slice thickness. Acidity and pH are inversely correlated; the lower the pH, the greater the acidity, and vice versa. Additionally, after osmo-dehydration, pH values increased with rising osmotic concentrations. Dehydration led to more significant solid gain and less water loss at higher osmotic concentrations, which altered the relative quantities of different solutes. The highest pH value of 6.84 was obtained in a 0.5 cm thick slice treated with 60 °Brix solutions, and the lowest pH value of 6.38 was found in a 1.5 cm thick slice immersed in 40 °Brix solutions.

3.6.2 Vitamin C

The vitamin C content of Osmo-dehydrated microwave-dried (ODMWD) pineapple slices is summarized in Table 2. The slice thickness and solution concentration did not show any significant effect on vitamin C content except for the 1.5 cm slice treated with 60 °Brix solutions. The vitamin C content of all samples was near about 30 mg/100 g, whereas the 1.5 cm slice immersed in 60 °Brix solutions possessed the height vitamin C of 35.60 mg/100 g. Vitamin C content of samples decreased with increasing osmotic concentrations because higher osmotic pressures can accelerate the loss of water from tissues and cause more vitamin C to leach out of cells along with water during osmotic dehydration. The level of structural collapse and vitamin C content is connected. Because structural collapse increases material density, it might also affect the degradation rate of vitamin C [52]. However, the pre-treatment with sucrose (osmosis) had a significant protective impact on the ascorbic acid loss during drying. The sample treated with 60 °Brix solution retrained the highest vitamin C, most likely due to the sugar effect resulting in a reduction in loss of soluble components, for example, ascorbic acid [8]. A similar effect of osmotic solution concentration on pineapple slices has also been reported by Salazar et al. [53].
Table 1. Color attributes of osmotically dehydrated pineapple slices treated with different osmotic solution concentrations

<table>
<thead>
<tr>
<th>Sample Thickness (cm)</th>
<th>Osmotic solution concentration</th>
<th>40 °Brix</th>
<th>50 °Brix</th>
<th>60 °Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L*</td>
<td>a*</td>
<td>b*</td>
<td>C</td>
</tr>
<tr>
<td>Fresh</td>
<td>50.97±4</td>
<td>5.83±3</td>
<td>43.4±2</td>
<td>43.79±3</td>
</tr>
<tr>
<td>0.5</td>
<td>62.40</td>
<td>7.20</td>
<td>53.17</td>
<td>46.78</td>
</tr>
<tr>
<td>1.0</td>
<td>42.13</td>
<td>13.50</td>
<td>27.27</td>
<td>30.43</td>
</tr>
<tr>
<td>1.5</td>
<td>37.17</td>
<td>13.50</td>
<td>27.27</td>
<td>30.43</td>
</tr>
</tbody>
</table>

Note: L* - lightness, a* - redness, b* - yellowness, C - chroma and H - hue angle. Values represent the mean of three replicates. Different lowercase superscript letters in the same column symbolize statistical differences (P < 0.05) between the samples.

Table 2. Chemical properties of Osmo-dehydrated microwave-dried (ODMWD) pineapple slices

<table>
<thead>
<tr>
<th>Sample thickness (cm)</th>
<th>Osmotic solution concentration</th>
<th>40 °Brix</th>
<th>50 °Brix</th>
<th>60 °Brix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%TA</td>
<td>pH</td>
<td>%TSS</td>
<td>Vitamin C (mg/100 g)</td>
</tr>
<tr>
<td>Fresh</td>
<td>0.22±0.02</td>
<td>6.71±0.02</td>
<td>7.63±1.05</td>
<td>28.60±3.06</td>
</tr>
<tr>
<td>0.5</td>
<td>0.17±0.02</td>
<td>6.68±0.03</td>
<td>9.13±0.06</td>
<td>31.50±3.20</td>
</tr>
<tr>
<td>1.0</td>
<td>0.22±0.01</td>
<td>6.38±0.04</td>
<td>9.23±0.15</td>
<td>31.97±3.50</td>
</tr>
</tbody>
</table>

Note: Values represent the mean of three replicates. Different lowercase superscript letters in the same column symbolize statistical differences (P < 0.05) between the samples.
3.6.3 Total sugar content

The total sugar content of ODMWD pineapple slices is depicted in Fig. 6. In our study, the total sugar content of samples was not affected by slice thickness, whereas the concentration of Osmo-solution showed an effect. Total sugar content increased with the increase of concentration of the osmotic solution and increased mass reduction effect due to loss in moisture content. Additionally, sucrose was the main compound in total sugars due to its incorporation from the OD solution, which increased the total sugar content. Total sugar content increased with the increase of concentration of the osmotic solution. The highest total sugar content was found in the 0.5 cm thick sample treated in 60 °Brix solutions. The sample with 1.4 cm in thickness and 40 °Brix solutions treatment had the lowest total sugar concentration. An increase in total sugar content after microwave drying could be attributed to the hydrolysis of sucrose during the drying process.

3.6.4 Rehydration ratio

Rehydration is one of the dried food product quality indicators. The degree of rehydration a product provides is a good indicator of how fresh it is. The capacity of water uptake during rehydration can be measured using the rehydration ratio. It indicates the substance’s capacity to return to its original properties [54]. It also provides information about internal damage in the product that occurred during drying [55]. The rehydration capacity of the dried fruits is not affected by the drying conditions of the microwave programs [19]. The results of the rehydration ratio of ODMWD pineapple slices are depicted in Fig. 7. The thickness of the sample slice showed an effect on the rehydration ratio. The 0.5 cm slices possessed a higher rehydration ratio than other samples in all three different concentrations of osmotic solution. The osmotic solutions concentration showed the same effect on the water rehydration of ODMWD samples. More concentrated fruit components are associated with a greater rehydration ratio. A larger rehydration ratio could have resulted from the absorption of more water due to the presence of more tissues [56]. A high rehydration ratio indicates that the dried material is of high quality because pores allow water to penetrate the cells [57]. Onal et al. [58] and Atares et al. [59] found that after being osmotically dehydrated, apple cylinders retained solutes more effectively. According to several earlier studies, immersing various fruits and vegetables in a concentrated sugar solution protects their cell walls [60-63].

3.6.5 Total phenolic content of ODMWD pineapple slices

The total phenolic content (TPC) of all ODMWD samples is shown in Fig. 8. The slice thickness and concentration of the osmotic solution demonstrated an effect on the TPC of the final dried product. The sample treated with 60 °Brix exhibited a gradual increase with an increase in slice thickness, whereas the 40 °Brix treated sample possesses a gradual decrease with an increase in slice thickness. The highest value of TPC of 78.5 mg GAE/100g was recorded for the sample of 1.5 cm thickness and treated with 50 °Brix solutions. In this study, the retention of antioxidant activity is greater at higher concentration levels of osmotic solution. Le and Konsue [64] demonstrated that low sucrose consumption might have a detrimental impact on the end product’s TPC levels. Giovannelli et al. [65] also reported that the osmotic agent used in osmotic dehydration has a direct impact on the retention of bioactive substances. The retention of more TPC in slices may be due to the high concentration of osmotic solution promoting a protective impact on the fruit’s surface by limiting the outflow of antioxidant substances [66]. These results agreed with those of Rahman et al. [67]. The reduction of TPC indicated that the phenolic compounds might have transferred from fruit to the osmotic solution during the OD process under the influence of concentration gradient, leading to a lower phenolic content [68]. A high concentration of sucrose promotes a protective effect on the surface of the fruit by preventing the outflow of antioxidant compounds. The retention of antioxidant activity is greater at higher sugar levels. These results agreed with those of Almeida et al. [66].
Fig. 6. Total sugar content (%) of ODMWD pineapple slices

Fig. 7. Rehydration ratio of ODMWD pineapple slices

Fig. 8. Total phenolic content of ODMWD pineapple slices
4. CONCLUSION

In the research study, microwave drying and rehydration were performed after OD of pineapple slices. Variation in slice thickness and the concentration of the solution was found to have an effect on the mass transfer kinetics and physiochemical properties and the phenolic content of both OD and ODMWD pineapple samples. Osmosis, used as a pre-treatment before microwave drying, successfully reduced drying time. Therefore, it can be concluded that the proposed research not only facilities faster moisture removal from pineapple fruits but also yields quality dehydrated slices. The outcomes of this study indicated that osmotic dehydration followed by microwave drying of pineapple fruit could be used for value-added processing products.

COMPETING INTERESTS

The authors have declared that no competing interests exist.

REFERENCES

Akhtaruzzaman et al.; Asian Food Sci. J., vol. 21, no. 12, pp. 63-77, 2022; Article no.AFSJ.94490

Available:https://doi.org/10.1080/07373930.600626578


42. Ahmed I, Qazi IM, Jamal S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov Food Sci Emerg Technol. 2016;34:29-43. DOI: 10.1016/j.ifset.2016.01.003


62. Albanese D, Cinquanta L, Dimatteo M. Effects of an innovative dipping treatment on the cold storage of minimally processed Annurca apples. Food Chem. 2007;105(3):1054-60. DOI: 10.1016/j.foodchem.2007.05.009


