Bushmeat Consumption in Africa: A Microbiological Safety Challenge?

Gwladys Gloria Amen Ahouanse *

Department of Food Science and Agro-processing, School of Engineering and Technology, P.O. Box 3006, Chuo Kikuu, Morogoro, Tanzania.

Abdulsudi Issa-Zacharia

Department of Food Science and Agro-processing, School of Engineering and Technology, P.O. Box 3006, Chuo Kikuu, Morogoro, Tanzania.

Nuria Majaliwa

Department of Food Science and Agro-processing, School of Engineering and Technology, P.O. Box 3006, Chuo Kikuu, Morogoro, Tanzania.

*Author to whom correspondence should be addressed.


Abstract

Objective: This review analyzed the microbiological safety of bushmeat consumed in Africa over the past decades.

Methodology: Previous Studies mainly focused on large animals like antelopes and smaller ones like grasscutter. Most microbes studied were similar to those in domestic animal meat, except for rare pathogens such as Salmonella spp, E.coli. Sampling, experiments, and microbe prevalence varied among studies.

Results: All studies confirmed the presence of zoonotic pathogens dangerous to human beings. Therefore, more investigations are needed, especially for the chronic and severe cases of pathogens, since only few studies have addressed the bushmeat's microbiological safety in Africa.

Conclusion: Efforts should be made to improve bushmeat safety and public health in Africa. New policies and public regulations must be developed and implemented to ensure hygienic and legal bushmeat production in Africa.

Keywords: Meat safety, foodborne, pathogens, public health, Bushmeat


How to Cite

Ahouanse , Gwladys Gloria Amen, Abdulsudi Issa-Zacharia, and Nuria Majaliwa. 2023. “Bushmeat Consumption in Africa: A Microbiological Safety Challenge?”. Asian Food Science Journal 22 (9):149-57. https://doi.org/10.9734/afsj/2023/v22i9667.

Downloads

Download data is not yet available.

References

Brodie et McIntyre. Bushmeat biogeochemistry hunting tropical mammals. Cited March 16,2022. Available:https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.2019.0966.pdf

Cawthorn D-M, Hoffman L C. The bushmeat and food security nexus: A global account of the contributions, conundrums and ethical collisions. Food Research International. 2015;76:906–925. Available:https://doi.org/10.1016/j.foodres.2015.03.025

Ngama 2015. Analyse quantitative de la consommation en viande de brousse en vue d une gestion durable de la faune sauvage au Gabon.pdf. (n.d.). Retrieved January 24, 2022.

Nielsen M R, Pouliot M, Meilby H, Smith-Hall C, & Angelsen A. Global patterns and determinants of the economic importance of bushmeat. Biological Conservation. 2017;215:277–287. Available:https://doi.org/10.1016/j.biocon.2017.08.036

Dell BM, Souza MJ, Willcox AS. Attitudes, practices, and zoonoses awareness of community members involved in the bushme at trade near Murchison Falls National Park, northern Uganda. PLOS ONE. 2020;15: 0239599.

Djagoun CAMS, Sogbohossou EA, Kassa B, Ahouandjinou CB, Akpona HA, Sinsin B. Effectiveness of Protected Areas in Conserving the Highly Hunted Mammal Species as Bushmeat in Southern Benin. The Open Ecology Journal. 2018;11:14–24.

Changula K, Kajihara M, Mweene AS, Takada A. Ebola and Marburg virus diseases in Africa: Increased risk of outbreaks in previously unaffected areas?: Filoviral hemorrhagic fevers in Africa. Microbiology and Immunology. 2014;58:483–491. Available:https://doi.org/10.1111/1348-0421.12181

Mossoun A, Calvignac-Spencer S, Anoh AE, Pauly M S, Driscoll DA, Michel AO, et al. Bushmeat Hunting and Zoonotic Transmission of Simian T-Lymphotropic Virus 1 in Tropical West and Central Africa. Journal of Virology. 2017; 91:02479-16. Available:https://doi.org/10.1128/JVI.02479-16

Van Vliet N, Moreno Calderón J L, Gómez J, Zhou W, Fa J E, Golden C, et al. Bushmeat and human health: Assessing the evidence in tropical and sub-tropical forests. Ethnobiology and Conservation. 2017;6:3.

Available:https://doi.org/10.15451/ec2017-04-6.3-1-45

Makelele K M, Kazadi A Z, Oleko R W, et al. Microbiological quality of food sold by street vendors in Kisangani, Democratic Republic of Congo. African Journal of Food Science. 2015;9:285–290.

Available:https://doi.org/10.5897/AJFS2015.1263

Chabi-Boni D S, Natta A K, Nago S G A, Mensah G A. Diversité des Espèces de Faunes Chassées et Impact sur la Biodiversité Animale (Nord-Ouest du Bénin). European Scientific Journal ESJ. 2019;15. Available:https://doi.org/10.19044/esj.2019.v15n9p263

Katani R, Schilling M A, Lyimo B, Tonui T, Cattadori I M, Eblate E, et al. Microbial Diversity in Bushmeat Samples Recovered from the Serengeti Ecosystem in Tanzania. Scientific Reports. 2019; 9:18086.

Available:https://doi.org/10.1038/s41598-019-53969-7

Akani GC, Amadi N, Eniang E A, Luiselli L, & Petrozzi F. Are mammal communities occurring at a regional scale reliably represented in “hub” bushmeat markets? A case study with Bayelsa State (Niger Delta, Nigeria). Journal of Vertebrate Biology. 2015;64:79–86.

Akani GC, Dendi D, Luiselli L. Ebola virus effects on the bushmeat trade in West Africa. African Journal of Ecology. 2015; 53:613–615. Available:https://doi.org/10.1111/aje.12231

Ordaz-Németh I, Arandjelovic M, Boesch L, Gatiso T, Grimes T, Kuehl H S, et al. The socio-economic drivers of bushmeat consumption during the West African Ebola crisis. PLOS Neglected Tropical Diseases. 2017;11:0005450.

Available:https://doi.org/10.1371/journal.pntd.0005450

Luiselli L, Hema E M, Segniagbeto G H, Ouattara V, Eniang E A, Parfait G, et al. Bushmeat consumption in large urban centres in West Africa. Oryx. 2020;54:731–734.

Available:https://doi.org/10.1017/S0030605318000893

Buisson Y, Marié J, Davoust B. These infectious diseases imported with food. Bulletin de La Société de Pathologie Exotique. 2008b;101:343– 347. Available:https://doi.org/10.3185/pathexo3210

Thakali A, MacRae J D. A review of chemical and microbial contamination in food: What are the threats to a circular food system? Environmental Research. 2021;194:110635.

Available:https://doi.org/10.1016/j.envres.2020.110635

Osbjer K, Boqvist S, Sokerya S, Kannarath C, San S, Davun H, et al. Household practices related to disease transmission between animals and humans in rural Cambodia. BMC Public Health. 2015; 15:476.

Available:https://doi.org/10.1186/s12889-015-1811-5

Benítez-López A, Alkemade R, Schipper AM, Ingram DJ, Verweij PA, Eikelboom, JAJ, et al. The impact of hunting on tropical mammal and bird populations. Science. 2017; 356:180–183.

Available:https://doi.org/10.1126/science.aaj1891

Mufunda J, Ndambakuwa Y, Mu-nodawafa D, Kobie A. Is a Total Ban on Business and Consumption of Bushmeat a Sustainable End Game for Ebola Outbreak in West Africa: But Why Now? Public Health Open J. 2016;1:4–7.

Available:https://doi.org/10.17140/PHOJ-1-102

Degla P, Soule S, Kpadonou G E, et al. Analysis of the financial effect of the appearance of Ebola and Lassa Epidemics on the beat hunting in the peripheries of the Municipality of Parakou in Northern Benin. International Journal of Innovation and Scientific Research. 2017;29:172– 183.

Kenmoe S, Tchatchouang S, Ebogo-Belobo J T, Ka’e A C, Mahamat G, Simo R E G, et al. Systematic review and meta-analysis of the epidemiology of Lassa virus in humans, rodents and other mammals in sub-Saharan Africa. PLOS Neglected Tropical Diseases. 2020;14:0008589. Available:https://doi.org/10.1371/journal.pntd.0008589

Lecompte E, Fichet-Calvet E, Daffis S, Koulémou K, Sylla O, Kourouma F, et al. Mastomys natalensis and Lassa Fever, West Africa. Emerging Infectious Diseases. 2006;12:1971–1974.

Available:https://doi.org/10.3201/eid1212.060812

N’koué Sambiéni E, Danko N, Ridde V. La Fièvre Hémorragique à Virus Lassa au Bénin en 2014 en contexte d’Ebola: Une épidémie révélatrice de la faiblesse du système sanitaire. Anthropologie & Santé. Revue internationale francophone d’anthropologie de la santé. 2015;11:11.

Available:https://doi.org/10.4000/anthropologiesante.1772

Yessinou R, Richi A, Waladjo K, Noudeke N, Dramou I, Adinsi Js, et al. 2020 Dynamic and Epidemiology of Lassa Fever Infection in West Africa’s Population from 1969 to 2019.

Cénat J M, Kokou-Kpolou C K, Mukunzi J N, Dalexis R D, Noorishad P-G, Rousseau C, et al. Ebola virus disease, stigmatization, peritraumatic distress, and posttraumatic stress disorder in the Democratic Republic of the Congo: A moderated mediation model. Journal of Affective Disorders. 2021;293:214–221.

Available:https://doi.org/10.1016/j.jad.2021.06.047

Malvy D, McElroy A K, de Clerck H, Günther S, & van Griensven J. Ebola virus disease. The Lancet. 2019;393: 936–948. Available:https://doi.org/10.1016/S0140-6736(18)33132-5

Rugarabamu S, George J, Mbanzulu K M, Mwanyika G O, Misinzo G, & Mboera, L E G. Estimating Risk of Introduction of Ebola Virus Disease from the Democratic Republic of Congo to Tanzania: A Qualitative Assessment. Epidemiologia. 2022;3:1.

Semper A E, Broadhurst M J, Richards J, Foster G M, Simpson A J H, Logue C H, et al. Performance of the GeneXpert Ebola Assay for Diagnosis of Ebola Virus Disease in Sierra Leone: A Field Evaluation Study. PLOS Medicine 2016; 13:1001980. Available:https://doi.org/10.3390/epidemiologia3010007

WHO,2020. (n.d.). Retrieved December 1, 2022, from https://apps.who.int/iris/bitstream/handle/10665/331584/WHO-2019-nCov-workplace-2020.2-eng.pdf

Abdul IW. Determinants of Polycyclic Aromatic Hydrocarbons in Smoked Bushmeat. International Journal of Nutrition and Food Sciences. 2014a; 3: 1–1.

Available:https://doi.org/10.11648/j.ijnfs.20140301.11

Bachand N, Ravel A, Onanga R, Arsenault J, & Gonzalez J-P. Public Health Significance of Zoonotic Bacterial Pathogens from Bushmeat Sold in Urban Markets of Gabon, Central Africa. Journal of Wildlife Diseases. 2012;48:785– 789. Available:https://doi.org/10.7589/0090-3558-48.3.785

Mpalang RK, Mpalang MK, Mukeng Kaut C, Boreux R, Melin P, Bitiang F K A N, et al. Bacteriological assessment of smoked game meat in Lubumbashi, D.R.C. Biotechnol Agron Soc Environ. 2013a; 17:441-449.

Kayode R, Kolawole O. Studies on the â-lactamase production of bacterial isolates from smoked bush meats correlated with bacterial resistance to three ß-lactam antibiotics. Journal of Applied Sciences and Environmental Management. 2010a;12. Available:https://doi.org/10.4314/jasem.v12i2.55538

Korsak Koulagenko N, Clinquart A, Daube G. Salmonella spp. in food of animal origin: A continuous threat for public health? Annales de Médecine Vétérinaire. 2004;148. Available:https://orbi.uliege.be/handle/2268/462

Ikeh IM, Anele BC, Ogbodo UA. Assessment of Microbiological Quality Associated with Ready- to- Eat Bush Meat Sold at Rumuokoro Market in Rivers State. Asian Journal of Research in Zoology. 2021;4:14–19.

Available:https://doi.org/10.9734/ajriz/2021/v4i430121

Salifou C, Boko K, Ahounou G, Tougan, P., Kassa S, Houaga I, Farougou S, et al. Diversité de la microflore initiale de la viande et sécurité sanitaire des consommateurs. International Journal of Biological and Chemical Sciences. 2013; 7:1351. Available:https://doi.org/10.4314/ijbcs.v7i3.41

Zarei O, Shokoohizadeh L, Hossainpour H, & Alikhani, M Y. The Prevalence of Shiga Toxin-Producing Escherichia coli and Enteropathogenic Escherichia coli Isolated from Raw Chicken Meat Samples. International Journal of Microbiology. 2021;2021:3333240. Available:https://doi.org/10.1155/2021/3333240

Haindongo N, Nkandi J, Hamatui N, Aku Akai L, Hemberger M Y, Khaiseb S, et al. The prevalence of non-O157:H7 Shiga toxin-producing Escherichia coli (STEC) in Namibian game meat | Veterinaria Italiana; 2019.

Available:https://www.veterinariaitaliana.izs.it/index.php/VetIt/article/view/1228.

Bouzari S, Farhang E, Hosseini S M, Alikhani M Y. Prevalence and antimicrobial resistance of shiga toxin-producing Escherichia coli and enteropathogenic Escherichia coli isolated from patients with acute diarrhea. Iranian Journal of Microbiology. 2018;10:151–157.

Emelue G, & Idaewor J. Assessment of microbial count loads of bush meats sold at different markets in Benin city, edo state, Nigeria. International Journal of Agricultural Science. 2018; 3: 6.

Oghenekome A, Rose E. An Assessment of Microbial Contamination of Bush Meat Sold at Different Locations along Warri/Benin Express Way in Nigeria. International Journal of Innovative Science and Research Technology. 2020;5:2456-2165.

Parlet C P, Brown M M, Horswill A R. Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends in Microbiology. 2019;27:497–507.

Available:https://doi.org/10.1016/j.tim.2019.01.008

Fitzgerald J R. Livestock-associated Staphylococcus aureus: Origin, evolution and public health threat. Trends in Microbiology. 2012; 20: 192–198. Available:https://doi.org/10.1016/j.tim.2012.01.006

Rossler E, Olivero C, Soto L P, Frizzo L S, Zimmermann J, Rosmini M R, et al. Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. International Journal of Food Microbiology. 2020;326:108641.

Available:https://doi.org/10.1016/j.ijfoodmicro.2020.108641

Katani R, Schilling M A, Lyimo B, Eblate E, Martin A, Tonui T et al. Identification of Bacillus anthracis, Brucella spp., and Coxiella burnetii DNA signatures from bushmeat. Scientific Reports. 2021;11:1.

Available:https://doi.org/10.1038/s41598-021-94112-9

Gluszek S, Viollaz J, Mwinyihali R, Wieland M, & Gore M L. Using conservation criminology to understand the role of restaurants in the urban wild meat trade. Conservation Science and Practice. 2021; 3:368.

Available:https://doi.org/10.1111/csp2.368

EC.Available:https://www.fsai.ie/uploadedFiles/Reg2073_2005(1).pdf. Cited November 30, 2022

Lucas A, Kumakamba C, Saylors K, Obel E, Kamenga R, Makuwa M, et al. Risk perceptions and behaviors of actors in the wild animal value chain in Kinshasa, Democratic Republic of Congo. PLOS ONE. 2022;17: 0261601.

Available:https://doi.org/10.1371/journal.pone.0261601