OSMO-Microwave Drying of Pineapple (Ananas comosus) Slices: Mass Transfer Kinetics and Product Quality Characterization
Asian Food Science Journal, Volume 21, Issue 12,
Page 63-77
DOI:
10.9734/afsj/2022/v21i12606
Abstract
This present research aimed to investigate the effect of slice thickness and concentration of the osmotic solution on mass transfer kinetics, the color profile of osmotically dehydrated pineapple slices, and product quality characteristics of osmotically dehydrated microwave-dried (ODMWD) products. Three slice thicknesses (0.5, 1, and 1.5 cm) and three concentrations of osmotic solution (40, 50, and 60 °Brix) were used. The mass transfer kinetics (moisture reduction behaviour, weight loss, solid gain), physicochemical properties (color, TSS, pH, titratable acidity, vitamin C, and total sugar), and total phenolic content of pineapple slices were analyzed. During osmotic dehydration, the moisture reduction behaviour of 0.5 cm slices was faster in all osmotic solutions, whereas water loss and solid gain were higher for all slices treated with 60 °Brix. Both slice thickness and concentration of the solution significantly affected the color of OD pineapple slices. For ODMWD products, total soluble solids (TSS), pH, ascorbic acid content, total sugar, and total phenolic content increased for all slice thicknesses with an increase in osmotic solution concentration, whereas titratable acidity exhibited the opposite result. The rehydration ratio was higher in 0.5 cm slices for all solution concentrations. According to the finding, pineapple fruits can be dehydrated by using 60 °Brix solution concentration with 0.5 cm slices for making dehydrated pineapple fruit, and osmotic dehydration followed by microwave drying of pineapple fruit could be used for value-added processing products.
- Mass transfer
- microwave drying
- Osmotic dehydration
- pineapple
- product quality
How to Cite
References
Hossain MA, Khatun M, Matin MA, Dewan MF. Postharvest loss assessment of major fruits grown in hill regions of Bangladesh. Bangladesh J Agric Res. 2017;42(1):171-84.
Available:https://doi.org/10.3329/bjar.v42i1.31989
Hossian M, Abdulla F. A Time Series analysis for the pineapple production in Bangladesh. Jahangirnagar Univ J Sci. 2015;38(2):49-59.
BBS. Dhaka, Bangladesh: Bangladesh Bureau of Statistics, Statistics and Information Division, Ministry of Planning; 2020.
Septembre-Malaterre A, Stanislas G, Douraguia E, Gonthier MPEvaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chem. 2016;212:225-33.
DOI: 10.1016/j.foodchem.2016.05.147
Sharma RR, Singh D, Singh R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control. 2009;50(3):205-21.
Available:https://doi.org/10.1016/j.biocontrol.2009.05.001
Chakraverty A, Mujumdar AS, Ramaswamy HS. Handbook of postharvest technology: cereals, fruits, vegetables, tea, and spices. CRC Press. 2003;93.
Ozdemir M, Ozen BF, Dock LL, Floros JD. Optimization of osmotic dehydration of diced green peppers by response surface methodology. LWT Food Sci Technol. 2008;41(10):2044-50.
Available:https://doi.org/10.1016/j.lwt.2008.01.010
Saputra D. Osmotic dehydration of pineapple. Drying Technol. 2001;19(2):415-25.
Available: https://doi.org/10.1081/DRT-100102914
Amami E, Khezami L, Vorobiev E, Kechaou N. Effect of pulsed electric field and osmotic dehydration pretreatment on the convective drying of carrot tissue. Drying Technol. 2008;26(2):231-8.
Available:https://doi.org/10.1080/07373930701537294
Arslan D, Özcan MM. Dehydration of red bell-pepper (Capsicum annuum L.): change in drying behavior, colour and antioxidant content. Food Bioprod Process. 2011;89(4):504-13.
Available: https://doi.org/10.1016/j.fbp.2010.09.009
Yadav BS, Yadav RB, Jatain M. Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology. J Food Sci Technol. 2012;49(5):547-55.
DOI: 10.1007/s13197-011-0298-z
Verma D, Kaushik N, Rao PS. Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food Bioprocess Technol. 2014;7(5):1281-97.
Available: https://doi.org/10.1007/s11947-013-1124-6
An N, Li D, Wang L, Wang Y. Factors affecting energy efficiency of microwave drying of foods: an updated understanding. Crit Rev Food Sci Nutr. 2022:1-29.
Available:https://doi.org/10.1080/10408398.2022.2124947
Li H, Ramaswamy HS. Osmotic dehydration of apple cylinders: III. Continuous medium flow microwave heating conditions. Drying Technol. 2006;24(5):643-51.
Available:https://doi.org/10.1080/07373930600626578
Pereira NR, Marsaioli Jr A, Ahrné LM. Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas. J Food Eng. 2007;81(1):79-87.
Available:https://doi.org/10.1016/j.jfoodeng.2006.09.025
Silva KS, Fernandes MA, Mauro MA. Osmotic dehydration of pineapple with impregnation of sucrose, calcium, and ascorbic acid. Food Bioprocess Technol. 2014;7(2):385-97.
Sethi K, Kaur M. Effect of osmotic dehydration on physicochemical properties of pineapple using honey, sucrose and honey-sucrose solutions. Int J Eng Adv Technol. 2019;9(1):6257-62.
Corrêa JLG, Dev SRS, Gariepy Y, Raghavan GSV. Drying of pineapple by microwave-vacuum with osmotic pretreatment. Drying Technol. 2011;29(13):1556-61.
Available:https://doi.org/10.1080/07373937.2011.582558
Botha GE, Oliveira JC, Ahrné L. Microwave assisted air drying of osmotically treated pineapple with variable power programmes. J Food Eng. 2012;108(2):304-11.
Available:https://doi.org/10.1016/j.jfoodeng.2011.08.009
Tippanna KS, Srinivas N, Patil AG. Effect of osmotic dehydration on mass transfer kinetics in pineapple slices. J Pharmacogn Phytochem. 2019;8(4):2161-4.
Nazaneen NS, Senapati AK, Raj D, Mahanand SS. Osmo dehydration of pineapple fruits: an overall review. J Food Process Technol. 2017;8(8).
DOI: 10.4172/2157-7110.1000689
Manzoor A, Khan MA, Mujeebu MA, Shiekh RA. Comparative study of microwave assisted and conventional osmotic dehydration of apple cubes at a constant temperature. J Agric Food Res. 2021;5:100176.
Available:https://doi.org/10.1016/j.jafr.2021.100176
Gamboa-Santos J, Montilla A, Soria AC, Villamiel M. Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. Eur Food Res Technol. 2012;234(6):1071-9.
Ranganna S. Handbook of analysis and quality control for fruit and vegetable products. Tata: McGraw-Hill Education; 1986.
AOAC Methods of analysis of AOAC. International. 18th ed. Arlington, VA: Association of Official Analytical Chemists; 2005.
Igual M, García-Martínez E, Martín-Esparza ME, Martínez-Navarrete N. Effect of processing on the drying kinetics and functional value of dried apricot. Food Res Int. 2012;47(2):284-90.
Available:https://doi.org/10.1016/j.foodres.2011.07.019
Vieira GS, Pereira LM, Hubinger MD. Optimisation of osmotic dehydration process of guavas by response surface methodology and desirability function. Int J Food Sci Technol. Oct 2012;47(1):132-40.
Selvakumar R, Tiwari RB. Effect of Osmotic Treatments on Weight Reduction, Water Loss, Solid Gain, Moisture, Total Solids, Yield and Drying ratio of Carrot (Daucus carota L.) Slices; 2018.
Mahesh U, Mishra S, Mishra H. Standardization of honey and sugar solution of osmotic dehydration of pineapple (Ananas comosus L.) fruit slices. Int J Curr Microbiol Appl Sci. 2017;6(7):2364-70.
Available:https://doi.org/10.20546/ijcmas.2017.603.280
Mirzayi B, Heydari A, Jabbari A. The effects of sucrose/NaCl/Time interactions on the osmotic dehydration of banana slices. Braz J Food Technol. 2018;21.
Available:https://doi.org/10.1080/07373930500538741
Cao H, Zhang M, Mujumdar AS, Du W, Sun J. Optimization of osmotic dehydration of kiwifruit. Drying Technol. 2006;24(1):89-94.
İspir A, Toğrul İT. Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chem Eng Res Des. 2009;87(2):166-80.
Thalerngnawachart S, Duangmal K. Influence of humectants on the drying kinetics, water mobility, and moisture sorption isotherm of osmosed air-dried papaya. Drying Technol. 2016;34(5):574-83.
Available: https://doi.org/10.1080/07373937.2015.1064942
Azoubel PM, Elizabeth Xidieh Murr FEX. Mass transfer kinetics of osmotic dehydration of cherry tomato. J Food Eng. 2004;61(3):291-5.
DOI:10.1016/S0260-8774(03)00132-8
Fasina O, Fleming H, Thompson R. Mass transfer and solute diffusion in brined cucumbers. J Food Sci. 2002;67(1):181-7.
DOI: 10.1111/j.1365-2621.2002.tb11380.x
Azarpazhooh E, Ramaswamy HS. Microwave-osmotic dehydration of apples under continuous flow medium spray conditions: comparison with other methods. Drying Technol. 2009;28(1):49-56.
DOI: 10.1007/s11947-010-0446-x
Ganjloo A, Rahman RA, Bakar J, Osman A, Bimakr M. Optimization of osmotic dehydration of seedless guava (Psidium guajava L.) in sucrose solution using response surface methodology. Int J Food Eng. 2014;10(2):307-16.
DOI: 10.1515/ijfe-2012- 0117
Chandra S, Kumari D. Recent development in osmotic dehydration of fruit and vegetables: a review. Crit Rev Food Sci Nutr. 2015;55(4):552-61.
DOI:10.1080/10408398.2012.664830
Eren İ, Kaymak-Ertekin F. Optimization of osmotic dehydration of potato using response surface methodology. J Food Eng. 2007;79(1):344-52.
DOI: 10.1016/j.jfoodeng.2006.01.069
Panagiotou NM, Karathanos VT, Maroulis ZB. Effect of osmotic agent on osmotic dehydration of fruits. Drying Technol. 1999;17(1-2):175-89.
DOI: 10.1080/07373939908917524
Falade KO, Igbeka JC, Ayanwuyi FA. Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. J Food Eng. 2007;80(3):979-85.
Available:https://doi.org/10.1016/j.jfoodeng.2006.06.033
Ahmed I, Qazi IM, Jamal S. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov Food Sci Emerg Technol. 2016;34:29-43.
DOI: 10.1016/j.ifset.2016.01.003
Nisha P, Singhal RS, Pandit AB. Kinetic modelling of color degradation in tomato puree (Lycopersicon esculentum L.). Food Bioprocess Technol. 2011;4(5):781-7.
Chutintrasri B, Noomhorm A. Color degradation kinetics of pineapple puree during thermal processing. LWT Food Sci Technol. 2007;40(2):300-6.
Available:https://doi.org/10.1016/j.lwt.2005.11.003
Limpaiboon K. Effects of temperature and slice thickness on drying kinetics of pumpkin slices. Walailak J Sci Technol (WJST). 2011;8(2):159-66.
Azimi-Nejadian H, Hoseini SS. Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat Mass Transfer. 2019;55(10): 2921-30.
DOI: 10.1007/s00231-019-02633-x
Akal D, Çelen S, Kahveci K, Akyol U. An experimental study on microwave drying behavior of kiwi. Mater Methods Technol. 2014;8:449-56.
Available: https://www.scientific-publications.net/en/article/1000194
Chaudhary V, Kumar V, Vaishali S, Sing K, Kumar R, Kumar V. Pineapple (Ananás cosmosus) product processing: a review. J Pharmacogn Phytochem. 2019;8(3):4642-52.
Zhao JH, Xiao HW, Ding Y, Nie Y, Zhang Y, Zhu Z et al. Effect of osmotic dehydration pretreatment and glassy state storage on the quality attributes of frozen mangoes under long-term storage. J Food Sci Technol. 2017;54(6):1527-37.
Silveira ETF, Rahman MS, Buckle KA. Osmotic dehydration of pineapple: kinetics and product quality. Food Res Int. 1996;29(3-4):227-33.
Mishra AA, Shukla RN, Mehnaza M. Effect of osmotic dehydration on quality characteristics of chikoo slices. Int J Sci Eng Technol. 2016;4(4):587-90.
Forni E, Sormani A, Scalise S, Torreggiani D. The influence of sugar composition on the colour stability of osmodehydrofrozen intermediate moisture apricots. Food Res Int. 1997;30(2):87-94.
Available: https://doi.org/10.1016/S0963-9969 (97)00038-0
Salazar DM, Álvarez FC, Acurio LP, Perez LV, Arancibia MY, Carvajal MG et al. Osmotic concentration of pineapple (Cayenne lisse) as a pretreatment for convection drying. IOP Conf S Earth Environ Sci. 2019;292(1):12039.
DOI:10.1088/1755-1315/292/1/012039
Ramya V, Jain NK. A review on osmotic dehydration of fruits and vegetables: an integrated approach. J Food Process Eng. 2017;40(3):e12440.
Tripathy PP, Kumar S. Influence of sample geometry and rehydration temperature on quality attributes of potato dried under open sun and mixed-mode solar drying. Int J Green Energy. 2009;6(2):143-56.
Available:https://doi.org/10.1080/15435070902784863
Ramallo LA, Mascheroni RH. Quality evaluation of pineapple fruit during drying process. Food Bioprod Process. 2012;90(2):275-83.
Available:https://doi.org/10.1016/j.fbp.2011.06.001
Okpala LC, Ekechi CA. Rehydration characteristics of dehydrated West African pepper (Piper guineense) leaves. Food Sci Nutr. 2014;2(6):664-8.
Önal B, Adiletta G, Crescitelli A, Di Matteo M, Russo P. Optimization of hot air drying temperature combined with pre-treatment to improve physico-chemical and nutritional quality of’Annurca’apple. Food Bioprod Process. 2019;115:87-99. doi: 10.1016/j.fbp.2019.03.002.
Atarés L, Chiralt A, González-Martínez C. Effect of solute on osmotic dehydration and rehydration of vacuum impregnated apple cylinders (cv. Granny Smith). J Food Eng. 2008;89(1):49-56.
DOI: 10.1016/j.jfoodeng.2008.04.002
Adiletta G, Russo P, Crescitelli A, Di Matteo M. Combined pretreatment for enhancing quality of dried and rehydrated eggplant. Food Bioprocess Technol. 2016;9(11):1912-23.
DOI: 10.1007/s11947-016-1778-y
Betoret E, Betoret N, Castagnini JM, Rocculi P, Dalla Rosa M, Fito P. Analysis by non-linear irreversible thermodynamics of compositional and structural changes occurred during air drying of vacuum impregnated apple (cv. Granny smith): calcium and trehalose effects. J Food Eng. 2015;147:95-101.
DOI: 10.1016/j.jfoodeng.2014.09.028
Albanese D, Cinquanta L, Dimatteo M. Effects of an innovative dipping treatment on the cold storage of minimally processed Annurca apples. Food Chem. 2007;105(3):1054-60.
DOI: 10.1016/j.foodchem.2007.05.009
Aktas T, Fujii S, Kawano Y, Yamamoto S. Effects of pretreatments of sliced vegetables with trehalose on drying characteristics and quality of dried products. Food Bioprod Process. 2007; 85(3):178-83.
DOI. 10.1205/fbp07037
Le D, Konsue N. Mass transfer behavior during osmotic dehydration and vacuum impregnation of ”Phulae” pineapple and the effects on dried fruit quality. Curr Res Nutr Food Sci J. 2021;9(1):308-19.
DOI: 10.12944/CRNFSJ.9.1.29
Giovanelli G, Brambilla A, Rizzolo A, Sinelli N. Effects of blanching pre-treatment and sugar composition of the osmotic solution on physico-chemical, morphological and antioxidant characteristics of osmodehydrated blueberries (Vaccinium corymbosum L.). Food Res Int. 2012;49(1):263-71.
DOI: 10.1016/j.foodres.2012.08.015
Almeida JAR, Mussi LP, Oliveira DB, Pereira NR. Effect of temperature and sucrose concentration on the retention of polyphenol compounds and antioxidant activity of osmotically dehydrated bananas. J Food Process Preserv. 2015;39(6): 1061-9.
Available:https://doi.org/10.1111/jfpp.12321
Rahman N, Xin TB, Kamilah H, Ariffin F. Effects of osmotic dehydration treatment on volatile compound (myristicin) content and antioxidants property of nutmeg (Myristica fragrans) pericarp. J Food Sci Technol. 2018;55(1):183-9.
DOI: 10.1007/s13197-017-2883-2
Kebe M, Renard CMCG, Amani GNG, Maingonnat JF. Kinetics of apple polyphenol diffusion in solutions with different osmotic strengths. J Agric Food Chem. 2014;62(40):9841-7.
Available:https://doi.org/10.1021/jf503100d
-
Abstract View: 179 times
PDF Download: 122 times